Crystal Structures and Pressure-Induced Redox Reaction of Cs2PdI4'**I2 to Cs2PdI6**

B. Schu1**pp,† P. Heines,† A. Savin,‡ and H.-L. Keller*,†**

Anorganische Chemie, Universität Dortmund, D-44221 Dortmund, Germany, and Laboratoire de Chimique Théorique, Université Pierre et Marie Curie, F-75252 Paris Cedex 05, France

*Recei*V*ed June 10, 1999*

Two iodopalladates of the same empirical formula with palladium in different oxidation states were synthesized from aqueous HI solution. Their crystal structures were characterized by single-crystal X-ray analysis, and the effect of hydrostatic pressure on the structural properties has been investigated. Dicesium hexaiodopalladate(IV), Cs₂PdI₆, crystallizes in a cubic system, space group *Fm*3m, with $a = 11.332(1)$ Å and $Z = 4$, and is isotypic to K_2PtCl_6 . The second compound, dicesium tetraiodopalladate(II) diiodine, Cs_2PdI_4 'I₂, shows tetragonal symmetry with space group *IA/mmm*, $a = 8.987(1)$ Å, $c = 9.240(1)$ Å, and $Z = 2$. The crystal structure can be described in resemblance to the Cs₂Au^IAu^{III}Cl₆ type. Structural relationships and chemical and structural transformation between both compounds will be discussed. DTA measurements at ambient pressure showed liberation of I_2 and decomposition of the compounds. $Cs_2PdI_4 \cdot I_2$ represents an excellent example for studying a solid-state electrontransfer reaction. The redox reaction to $Cs₂PdI₆$ can be demonstrated by performing pressure-dependent X-ray studies.

Introduction

Ternary and quaternary halides with palladium in the oxidation states $+2$ and $+4$ are known. Most of these halogenopalladates ($X = Cl$, Br, I) contain palladium(II), which exhibits a square-planar coordination, whereas in compounds of the general type M_2PdX_6 (M = alkaline metal, X = Cl, Br, I)^{1,2} palladium-(IV) shows an octahedral coordination geometry. Compounds containing large organic cations³⁻⁶ form Pd_2X_6 units with edgelinked PdX_4 groups. In pure inorganic structures condensation of PdX₄ groups was found in Tl₈Pd₇Br₂₂,⁷ where a pentameric motif is created by connecting simple PdX4 units via edges and vertexes.

Recently, we succeeded in preparing several ternary halogenopalladates in the system CsCl-PdCl₂ utilizing hydrothermal synthesis. $Cs_{12}Pd_9Cl_{30} \cdot 2H_2O$, $Cs_6Pd_5Cl_{16} \cdot 2H_2O$, and $CsPdCl_3$ contain $[Pd_2Cl_6]^{2-}$ units. In CsPd₂Cl₅ these units are transconnected by vertexes to form one-dimensional endless chains.8 In addition we were able to isolate a new tetrameric $[(PdCl₂ Cl_{2/2})$ ₄]⁴⁻ group in thallium(I) chloropalladate(II) $Tl_4Pd_3Cl_{10}$.⁹

It is surprising to note the small number of well-characterized iodopalladates. Apart from $K_2PdI_4^{10}$ only Cs_2PdI_6 and its decomposition product Cs_2PdI_4 are reported.² Cs_2PdI_6 was

- [‡] Université Pierre et Marie Curie
- (1) Shape, A. G. *J. Chem. Soc.* **1953**, 4177.
- (2) Sinram, D.; Brendel, C.; Krebs, B. *Inorg. Chim. Acta* **1974**, *64*, L131.
- (3) Gerisch, M.; Heinemann, F. W.; Markgraf, U.; Steinborn, D. *Z. Anorg. Allg. Chem.* **1997**, *623*, 1651.
- (4) Maassarani, F.; Pfeffer, M.; Le Borgne, G. *Organometallics* **1987**, *6*, 2029.
- (5) Harris, C. M.; Livingstone, S. E.; Stephenson, N. C. *J. Chem. Soc.* **1958**, 3697.
- (6) Harries, D. C.; Gray, H. B. *Inorg. Chem.* **1974**, *13*, 2250.
- (7) Duchaˆteau, M. Diplomarbeit, University of Kiel, 1989.
- (8) Schüpp, B.; Keller, H.-L. To be published.
- (9) Schu¨pp, B.; Keller, H.-L. *Z. Anorg. Allg. Chem.* **1999**, *625*, 241.
- (10) Yamada, S.; Tsuchida, R. *Bull. Chem. Soc. Jpn.* **1953**, *26*, 480.

characterized by Krebs et al.,² who studied hexaiodometalates by X-ray powder diffraction ($a = 11.311$ Å, isotypic to K₂- $PtCl₆¹¹$).

Here we report our efforts in preparation, single-crystal X-ray structure determination, DTA analysis, and pressure-dependent X-ray studies of the two compounds Cs_2PdI_6 (1) and Cs_2PdI_4 ^{*} I2 (**2**). Both are of identical chemical composition but occur in different oxidation states of Pd. These compounds, which were prepared in aqueous HI solution, serve as a very convenient model for electron-transfer reactions in the solid state. Upon application of pressure to **2** in a direct solid-state reaction, compound **1** can be afforded with oxidation from Pd(II) to Pd- (IV) and cleavage of the inserted iodine dumbbell to iodide.

Experimental Section

Synthesis and Characterization. Since PdI₂ decomposes between 365 und 651 °C, 12 the iodopalladates were not prepared by melting, quenching, and annealing mixtures of CsI and PdI₂. Preparation under hydrothermal conditions was not successful, due to the limited solubility product of PdI₂ in H₂O ($K_L = 3.73 \times 10^{-16}$ mol³/L³ at 25 °C, potentiometric measurement).¹³ Thus, we made use of the complex $[PdI₄]²⁻$, which is formed from PdI₂ in aqueous HI (57%): 0.3 g of a mixture of CsI and PdI₂ (CsI, Fluka; PdI₂, own preparation) with the molar ratio 10:1 was added to a quartz glass ampule. After addition of 1 mL of hydroiodic acid (57%, Chempur) the solvent was frozen, the ampule (\varnothing 6 mm, length 6 cm) was evacuated, sealed, then heated for 48 h at 150 °C, and slowly cooled to room temperature. The product contains three compounds: Cs₂PdI₄·I₂ (black needle-shaped crystals), $Cs₂PdI₆$ (black cubes), and CsI₃ (red plates) were found, which were isolated after filtration and washing with water and diethyl ether.

Having refined the experimental conditions, it was possible to yield the pure compounds Cs_2PdI_6 (1) and $Cs_2PdI_4 \cdot I_2$ (2). 1 is obtained by rapidly cooling the hydrothermal HI solution. Addition of I_2 (sublimed two times, Merck) on the other hand and slow cooling gives a mixture of **2** and CsI3, the latter of which is removed with ethanol.

(13) Geissler, M. *Z. Chem.* **1982**, *22*, 341.

10.1021/ic990670+ CCC: \$19.00 © 2000 American Chemical Society Published on Web 02/01/2000

^{*} To whom correspondence should be addressed. E-mail: keller@pop.unidortmund.de. Phone: +49 231 755 3804. Fax: +49 231 755 5048.

[†] Universität Dortmund.

⁽¹¹⁾ Williams, R. J.; Dillin, D. R.; Milligan, W. O. *Acta Crystallogr.* **1973**, *B29*, 1369.

⁽¹²⁾ Dupuis, T.; Duval, C. *Anal. Chim. Acta* **1950**, *4*, 615.

Table 1. Crystallographic Data for Cs_2PdI_6 and $Cs_2PdI_4 \cdot I_2$

	Cs ₂ PdI ₆	$Cs_2PdI_4 \cdot I_2$
space group	$Fm3m$ (no. 225)	$I4/mmm$ (no. 139)
a, \overline{A}	11.332(1)	8.987(1)
c, \AA		9.240(1)
V, \AA^3	1455.2	746.3
$\rho_{\text{calcd/obsd}}, g \cdot \text{cm}^{-3}$	5.174/5.209(6)	5.045/5.105(8)
M, $g \cdot mol^{-1}$	1133.66	1133.66
Z	4	2
T, K	293	293
μ , mm ⁻¹	18.88	18.41
$λ$ (Mo Kα), \AA	0.71069	0.71069
$wR2^a$	0.0858	0.0637
R1 $(F_0 > 4\sigma(F_0))^b$	0.0327 (98 reflections) 0.0248 (229 reflections)	
R1 (all F_0)	$0.0377(113$ reflections)	0.0351 (248 reflections)
a wR2 = { $\sum (w(F_0^2 - F_c^2)^2 / \sum (w(F_0^2)^2)$ } ^{0,5} . b R1 = $\sum F_0 - F_c $ /		
$\Sigma F_{\rm o} .$		

Table 2. Fractional Atomic Coordinates and Displacement Parameters $U_{eq}(\hat{A}^2)$ ($U_{eq} = 1/3 \sum_i \sum_j U_{ij} a_i^* a_j^* a_i a_j$) of Cs₂PdI₆ and $Cs_2PdI_4 \cdot I_2$

X-ray Studies. X-ray diffraction experiments with different crystals on a *κ*-CCD single-crystal diffractometer (Nonius) showed that, apart from red crystals of $CsI₃$,¹⁴ two other compounds were isolated. Two black lustrous crystals, needle-shaped $Cs_2PdI_4 \cdot I_2$ as well as cubic Cs_2 -PdI₆, were examined with monochromatic Mo K α radiation (λ = 0.71069 Å). φ -Scans were performed with a rotation angle of 1[°], and 360 frames have been taken, allowing a measuring time of 15 s/frame. Detector distances of 25 mm (**1**) and 26 mm (**2**) were chosen. Lattice parameters were determined and refined using the Denzo+Scalepack¹⁵ program package. We regret the lack of the possibility of perfoming absorption correction for the measurements at that time. We suppose no serious inaccuracy is contained. For **1**, a total of 2884 reflections with $-12 \le h \le 12$, $-14 \le k \le 14$, and $-14 \le l \le 14$ were collected. The number of independent reflections was 113 ($R_{int} = 0.0687$). For 2, 2801 collected and 248 independent reflections were observed with $-11 \leq h, k, l \leq 11$ ($R_{int} = 0.0818$). Starting models for structure refinement were found using direct methods (SHELXS 86¹⁶), and the structural data were refined versus *F*² by full-matrix least-squares methods (SHELXL 9317).

See Tables $1-3$ for crystallographic data, atomic coordinates and displacement parameters, and bond distances and angles, respectively, for Cs_2PdI_6 and $Cs_2PdI_4 \cdot I_2$.

Results and Discussion

Crystal Structure of Cs₂PdI₆. Cs₂PdI₆ (Figure 1) crystallizes isotypic to K_2PtCl_6 as well as the other dicesium hexahalogenopalladates(IV) Cs_2PdX_6 ^{1,18}

Crystal Structure of Cs₂PdI₄'I₂. The crystal structure of Cs₂- $PdI_4 \cdot I_2$ (Figure 1) resembles the basic structure motif of Cs_2 -

- (14) Runsink, J.; Swen-Walstra, S.; Migchelsen, T. *Acta Crystallogr.* **1972**, *B28*, 1331.
- (15) Otwinowsky, Z.; Minor, W. *Methods Enzymol.* **1997**, *276*, 307.
- (16) Sheldrick, G. M. SHELXS 86, Program for Crystal Structure Determination, University of Göttingen, 1986.
- (17) Sheldrick, G. M. SHELXL 93, Program for Crystal Structure Refinement, University of Göttingen, 1993.
- (18) Hoppe, R.; Klemm, W. *Z. Anorg. Allg. Chem.* **1952**, *268*, 364.

Figure 1. Crystal structure of Cs_2PdI_6 and $Cs_2PdI_4 \cdot I_2$, and transformation of Cs_2PdI_6 into a "tetragonal setting" (calculated parameters for a tetragonal setting of Cs₂PdI₆: *I4/mmm*, $a' = a/\sqrt{2} = 8.013(1)$ Å, $c' = a = 11332(1)$ Å, $V = 727$ 6 Å³). Thermal ellinsoids are at the 50% $a = 11.332(1)$ Å, $V = 727.6$ Å³). Thermal ellipsoids are at the 50% probability level probability level.

Table 3. Selected Interatomic Distances (Å) and Angles (deg) for Cs_2PdI_6 and $Cs_2PdI_4 \cdot I_2$

 $Au^{I}Au^{III}Cl_{6}^{19,20}$ and $Cs_{2}HgPdCl_{6}^{21}$ though $[AuCl_{2}]^{-}$ and [HgCl₂]-dumbbells, respectively, are substituted by I_2 molecules here. Palladium(II) shows a square-planar stereochemistry with palladium-iodine bond distances of $2.621(1)$ Å. The coordination sphere is supplemented by two more distant iodine atoms belonging to embedded I_2 molecules to form a strongly elongated octahedron around palladium. The iodine-iodine distance in the embedded iodine molecule is 2.774(2) Å, hereby slightly stretched compared to the value found in elementary iodine $(d_{I-I} = 2.715(2)$ Å).^{22,23} In polyiodides similar distances had been found. As examples we will consider the anion I_{12}^2 , observed in $[K(Crypt-2.2.2)]_2I_{12}$,²⁴ which can be described as $(I_3 - I_2) \cdot I_2 \cdot (I_3 - I_2)$ with I-I distances for the I₂ units of 2.758-
(2) and 2.797(2) \AA and the compound $[Co(NH_2) \cdot I_2] \cdot$ contain-(2) and 2.797(2) Å, and the compound $[Co(NH₃)₆]I₃I₄²⁵ contain$ ing I_4^{2-} units, which can be described by the species $(I^{-1}I_2 \cdot I^{-})$
showing a bond length of 2.791(2) \AA for the Lagroup. In showing a bond length of 2.791(2) Å for the I_2 group. In

- (19) Elliott, N.; Pauling, L. *J. Am. Chem. Soc.* **1938**, *60*, 1846.
- (20) Tindemans, J. C. M.; Verschoor, G. C. *Mater. Res. Bull.* **1974**, *9*, 1667.
- (21) Schro¨der, L.; Keller, H.-L. *Z. Anorg. Allg. Chem.* **1991**, *603*, 69.
- (22) Van Bolhuis, F.; Koster, P. B.; Migchelsen, T. *Acta Crystallogr.* **1967**, *23*, 90.
- (23) Ibberson, R. M.; Moze, O.; Petrillo, C. *Mol. Phys.* **1992**, *76*, 395.
- (24) Tebbe, K.-F.; Kavoosian, A. *Z. Naturforsch.***1993**, *48b*, 438.
- (25) Tebbe, K.-F. *Acta Crystallogr.* **1983**, *C39*, 154.

Figure 2. Section of the crystal structure of $Cs_2PdI_4 \cdot I_2$ showing the coordination sphere of the Cs site. Thermal ellipsoids are at the 50% probability level.

compounds with a simple I_2 molecule (e.g., $C_6H_{12}N_4 \cdot 3I_2$) an iodine-iodine bond length of 2.746(1) Å has been reported.²⁶

The centers of $[PdI_4]^{2-}$ units and of I_2 molecules are located alternately on a 4-fold rotation axis, 0 0 *z* and $\frac{1}{2}$ $\frac{1}{2}$ *z*, respectively, with $z = 0$ and $z = \frac{1}{2}$ belonging to the point symmetry of 4*m*2. Cesium is coordinated by four pairs of iodine atoms; each atom has a distance of 3.9676(5) Å to the central cesium atom. Each pair of these iodine atoms belongs to a $[PdI₄]²⁻$ unit, so that there are different iodine-iodine distances within the resulting CsI_8 polyhedron. They range from 3.7064-(8) Å for iodine atoms from the same $[PdI_4]^{2-}$ unit, to 4.752(4) Å for iodine atoms from different $[PdI_4]^{2-}$ units in the direction of the crystallographic *c*-axis, to 5.2806(9) Å in the directions [100] and [010]. This results in a strong distortion of the iodine polyhedron around cesium (Figure 2).

Iodine of site I(1) is 5-fold coordinated by one neighboring palladium atom and four cesium atoms, extending to a tetragonal pyramidal structure. Each I(2) is coordinated linearly by another I(2) atom, forming the I₂ molecule. At a distance of $3.233(1)$ Å Pd extends the coordination sphere of I(2).

The crystal structure of **2** can be described analogously to $Cs₂HgPdCl₆$ as the "filled-up" $K₂PdCl₄$ type.²¹ The empty channels in the K_2PdCl_4 -type structure are filled by I_2 and $[PdI_4]^{2-}$ along $\frac{1}{2}$ $\frac{1}{2}$ *z* in an alternating sequence. This special motif causes a change of the empirical formula A_2BX_4 in K_2 -PdCl₄ to $A_2BX_4 \cdot X_2$ and $A_2BX_4 \cdot HgX_2$, respectively.

The first example of this structure type is $Cs₂Au^IAu^{III}Cl₆$ and has already been reported by Elliott and Pauling¹⁹ in 1938. Unlike the examples discussed so far, $Cs_2PdI_4 \cdot I_2$ reveals a smaller c/a -ratio of 1.03 (Cs₂AuAuCl₆ 1.45, Cs₂AgAuCl₆¹⁹ 1.49, and $Cs₂HgPdCl₆$ 1.46). The reason for this lies in the shorter length of the dumbbell I_2 in relation to $AuCl_2^-$, $AgCl_2^-$, and $HgCl₂$.

Substitution of triatomic dumbbells by I_2 molecules implies a change of the coordination number of Cs from $CN = 12$ [Cs₂-AuAuCl₆, $d(Cs-Cl) = 3.768$ Å (4×) and 3.802 Å (8×); Cs₂-AgAuCl₆, $d(Cs-Cl) = 3.710$ Å (4×) and 3.806 Å (8×); $Cs_2HgPdCl_6$, $d(Cs-Cl) = 3.739$ Å (4×) and 3.796 Å (8×)] to $CN = 8$, or $CN = 8 + 4$ with $d(Cs-Cl) = 3.9676(5)$ Å $(8 \times)$ and 4.5873(5) Å $(4\times)$, respectively.

The relation to chloroperovskites can be rationalized by the group-subgroup relationship of space groups as described for the compound $Cs₂HgPdCl₆.²¹$

Relationship between 1 and 2. The structural relationship between **1** and **2** can be more clearly understood by transformation of the original setting for Cs_2PdI_6 into a tetragonal setting, which is illustrated in Figure 1 including the corresponding transformation matrix.

The contrasting kind of chemical bonding in both compounds can be indicated by ELF calculations (ELF = electron localization function).²⁷⁻²⁹ ELF describes chemical bonding by localized pairs of electrons. On the basis of density functional theory, calculations were performed with the program TB-LMTO-ASA

⁽²⁷⁾ Becke, A. D.; Edgecombe, K. E. *J. Chem. Phys.* **1990**, *92*, 5397.

Figure 3. Illustration of the ELF for $Cs_2PdI_4 \cdot I_2$ (a, left) and Cs_2PdI_6 (b, right) with an isovalue of 0.42.

(tight-binding linear muffin-tin orbital in the atomic sphere approximation).30 In Figure 3 the electron localization function is visualized by the program $SciAn³¹$ and displayed for an isovalue of 0.42. In the case of **2** (Figure 3a) we can see that this isosurface encloses a maximum of ELF ("localized electrons") between the iodine atoms of the embedded I_2 dumbbell which does *not* appear in the case of **1** (Figure 3b) for the same isovalue. The relatively low ELF value between the I atoms is related to the weakness of the bond in I_2 (compair the long I-I distance). Pd-I bonds can be made visible (not displayed) for an isovalue of 0.57 in both compounds. This higher level shows the stronger attraction for localized electrons within the Pd-^I bond.

DTA Measurements. The chemical relationship of the cesium iodopalladates **1** and **2** is obvious in the alternating sequence of $[PdI_4]^{2-}$ and I_2 units in the direction [001]. It should be possible to cause a transition between the compounds in direct solid-state redox reaction by application of pressure or temperature. To verify our assumption, we first performed TG/DTA experiments. We expected to gain additional information about the decomposition reaction of Cs_2PdI_6 as reported by Krebs.² Thermogravimetry showed for **1** a loss of mass in two steps, which corresponds to liberation of iodine (I_2) . The products, which were isolated from step 1 and step 2, show different X-ray powder patterns. Several peaks in the powder pattern of the decomposition product of step 1 can be assigned to CsI. The product of the second decomposition step shows a melting point at 430 \pm 5 °C. Following our observations, we assume the formation of at least one other compound; due to the lowered CsI content it will contain linked PdI_4 units. This would correspond to the results of our experiments in cesium chloropalladates(II) which show this kind of linkage. 8 Recently we were able to isolate a pure sample of the first decomposition step, and detailed structure investigations are to be published. DTA and TG lines of Cs_2PdI_6 and $Cs_2PdI_4 \cdot I_2$ are the same.

Pressure-Dependent X-ray Diffraction Experiments. Furthermore, application of pressure to **2** should induce a solidstate reaction to dicesium hexaiodopalladate(IV) involving cleavage of the I_2 dumbbell and oxidation of Pd(II) to Pd(IV).

⁽²⁸⁾ Savin, A.; Becke, A. D.; Flad, J.; Nesper, R.; Preuss, H.; von Schnering, H. G. *Angew. Chem*. **1991**, *103*, 421; *Angew. Chem., Int. Ed. Engl.* **1991**, *30*, 409.

⁽²⁹⁾ Savin, A.; Nesper, R.; Wengert, S.; Fässler, Th. F. *Angew. Chem.* 1997, *109*, 1892; *Angew. Chem., Int. Ed. Engl.* **1997**, *36*, 1809.

⁽³⁰⁾ Krier, G.; Jepsen, O.; Burkhardt, A.; Andersen, O. K. TB-LMTO program, Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany, 1994.

⁽³¹⁾ Pepke, E.; Murray, J.; Lyons, J.; Hwu, T.-Z., Florida State University, Tallahassee, FL, 1993.

Figure 4. Results of the pressure measurements for $Cs_2PdI_4 \cdot I_2$.

For this purpose energy-dispersive X-ray experiments with synchrotron radiation (Hasylab, DESY, Hamburg) were performed at different pressures. Pressures were generated by diamond anvil cells (DAC); details concerning this method are given by Huber, Syassen, and Holzapfel.³² The ruby luminescence method was performed for pressure determination, as pressure-transmitting media mineral oil and N_2 were used. The

(32) Huber, G.; Syassen, K.; Holzapfel, W. B. *Phys. Re*V*.* **¹⁹⁷⁷**, *B15*, 5123. IC990670+

change in the diffraction patterns as a result of the structural transition from $Cs_2PdI_4 \cdot I_2$ to Cs_2PdI_6 was quite obvious. At pressures $p \leq 1.24$ GPa we obtain a tetragonal indexing in agreement with the crystal structure of $Cs_2PdI_4 \cdot I_2$ (Figure 4). The length of the crystallographic *a*-axis decreases with increasing pressures ($p \le 1.24$ GPa), while the *c*-axis remains virtually constant. At pressures $p \ge 2.03$ GPa the powder patterns can be indexed face-centered cubic. Presumably, at higher pressures another transition takes place. Further experiments are in progress to obtain more detailed information.

Conclusions

Investigating the system CsI-PdI2, we were able to isolate two compounds with the same empirical formula and related crystal structures. The proposed transition from $Cs_2PdI_4 \cdot I_2$ to $Cs₂PdI₆$ can be demonstrated by pressure-dependent X-ray diffraction. The high-pressure experiments gave rise to the existence of another unknown modification ($p > 8$ GPa). The reverse reaction of **1** to **2** has not been observed yet, because performing temperature-dependent measurements has only been possible at ambient pressure so far.

DTA analysis demonstrated the liberation of iodine and simultaneous partial decomposition of **1** and **2** to CsI and another compound with a presumably higher palladium iodide content.

Acknowledgment. We are grateful to Dr. Hans-Josef Hesse (group of Prof. Dr. Wortmann) and Dipl.-Phys. Ing. Werner Sievers (group of Prof. Dr. Holzapfel), Universität-Gesamthochschule Paderborn, for their essential support concerning the pressure measurements. For their kind support in translating this manuscript, we thank Dipl.-Chem. Frank Hipler and Heather N. Heines. We also thank Degussa for donating chemicals and the Fonds der Chemischen Industrie for financial support.

Supporting Information Available: X-ray crystallographic files, in CIF format, and a table giving a comparison of relevant structure types. This material is available free of charge via the Internet at http://pubs.acs.org.